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Mace4 Reference Manual and Guide

William McCune

Abstract

Mace4 is a program that searches for finite models of first-order formulas. For a given
domain size, all instances of the formulas over the domain are constructed. The result is a
set of ground clauses with equality. Then, a decision procedure based on ground equational
rewriting is applied. If satisfiability is detected, one or more models are printed. Mace4 is
a useful complement to first-order theorem provers, with the prover searching for proofs and
Mace4 looking for countermodels, and it is useful for work on finite algebras. Mace4 performs
better on equational problems than did our previous model-searching program Mace2.

1 Introduction

First-order satisfiability is a difficult problem—it’s not even semidecidable. Fortunately, many of
the satisfiable statements that arise in practice have finite models, and those are what Mace4 looks
for. Most of the applications that drove the development of Mace4 are equational, and that is the
type of problem on which Mace4 performs well. So if you need help finding small finite algebras,
Mace4 is a good candidate.

Most of our work over the past few decades has been in automated theorem proving, that is,
searching for proofs. In 1994 I attended a workshop on spectra of finite quasigroups, and that
got me interested in searching for finite models of first-order statements. Using ideas from Mark
Stickel, Hantao Zhang, John Slaney, and others, I wrote the first version of Mace and used it to work
on several quasigroup problems [2]. The early versions of Mace (up through version 2.*) [4], work
quite differently from the one described in this report. The early versions transform the problem
into a purely propositional (SAT) problem and then apply a Davis-Putnam-Loveland-Logemann
(DPLL) procedure. That method works well in many cases, but if the original problem has clauses
with many variables or deeply nested terms, the transformation process blows up, and only very
small models can be sought.

For a given domain size, the problematic transformation has two stages (which can be done in
either order): (1) flattening the clauses, which, in effect, pre-processes the equality inferences, and
(2) generating all of the ground instances over the domain. The first stage, which allows us to use a
purely propositional decision procedure (without equality), causes the blowup.

If we skip the first stage, we get a set of ground clauses with equality, which is clearly a de-
cidable problem. Jian Zhang’s FALCON [7] works in this way, with a special-purpose decision
procedure. In particular, it has an optimization, the least-number heuristic (LNH), to take advan-
tage of symmetries in the problem. Shortly after FALCON was developed, Jian Zhang and Hantao
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Zhang produced SEM [8], which inherited those key methods of FALCON, and which has been
distributed and used in several projects.

Mace4 owes much to FALCON and SEM. It transforms the original problem to a ground clauses
with equality and uses a special-purpose decision procedure with the LNH. It also uses negative
inference rules as in FALCON and SEM.

2 A Little Motivation

Suppose you wish to see a small noncommutative group. You prepare the following input file,
named group.in.

assign(iterate_up_to, 10). % search up through order 10

clauses(theory).
E * x = x. % left identity
x’ * x = E. % left inverse
(x * y) * z = x * (y * z). % associativity
A * B != B * A. % A and B do not commute

Then, you give the input to Mace4 to look for a model as follows.

% mace4 < group.in > group.out

Mace4 succeeds, and the output file contains the following noncommutative group of order 6.

- Model 1 at 0.01 seconds -

E : 0 A : 1 B : 2

’ : 0 1 2 3 4 5
---------------

0 1 2 4 3 5

* : | 0 1 2 3 4 5
--+------------
0 | 0 1 2 3 4 5
1 | 1 0 3 2 5 4
2 | 2 4 0 5 1 3
3 | 3 5 1 4 0 2
4 | 4 2 5 0 3 1

3 The Input File

The input file starts with an optional set of commands that tell Mace4 how to search. The rest of the
file contains lists of clauses or formulas representing the theory, that is, the clauses or formulas you
wish to model. Comments can appear on any line in the file; they start with the character “%” and
end at the end of the line.
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3.1 The Commands

Mace4 has only a few types of command. The set and clear commands apply to flags, the
assign commands apply to integer-valued parameters, and the op commands are syntactic sugar,
allowing expressions to be written in more human-friendly ways.

3.1.1 Basic Commands

assign(domain size, n). % default n � �

Search for models of size n. See the following command if you wish for Mace4 to
iterate through larger domain sizes. The default value of domain size is n � �.

assign(iterate up to, n). % default n � �

If n � domain size, Mace4 will iterate through domain sizes, restarting the search
each time. For example if domain size=4 and iterate up to=6, Mace4 will
try 4, then 5, then 6, until those sizes are exhausted or until some other limit such as
max models applies.

set(print models). % default set
clear(print models).

If this flag is set, all found models are printed to the output file. The format of the
models depends on the state of the flag print models portable.

set(print models portable).
clear(print models portable). % default clear

If this flag is set, models are printed to the output file in portable format, which means
that they can be read by various other programs, for example, a program that takes a
list of models and removes isomorphic ones, or a program that uses models to filter
clauses.

assign(max models, n). % default n � �

The search will terminate when the nth model is found. (Typically, many of the models
are isomorphic; see the program isofilter in Section 8.) If domain-size iteration is
occuring, the model count carries over from each size to the next. The value n � ��
means that there is no limit.

assign(max seconds, n). % default n � ��
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The search will terminate if it reaches n seconds (user CPU time on UNIX-like sys-
tems). If domain-size iteration is occuring, the timer carries over from each size to the
next. The value n � �� means that there is no limit.

assign(max megs, n). % default n � ���

The search will terminate if it tries to dynamically allocate (malloc) more than n
megabytes of memory. (The entire Mace4 process can consume somewhat more than
max megs megabytes.)

set(prolog style variables).
clear(prolog style variables). % default clear

A rule is needed to distinguish variables from constants in clauses. Normally, variables
start with (lower case) u – z, and all other nullary symbols are constants. If this flag is
set, variables start with (upper case) A – Z.

set(verbose).
clear(verbose). % default clear

If this flag is set, the output file receives information about the search, including the
initial partial model (the part of the model that can be determined before backtracking
starts) and timing and other statistics for each domain size. (It does not give a trace of
the backtracking, so it does not consume a lot of file space.)

op(precedence, type, symbol).
op(precedence, type, list-of-symbols).

This command allows expressions to be written in infix, postfix, and prefix forms with-
out so many parentheses. For example, the command op(400,infix,*) de-
clares “*” to be an infix (binary) operation with precedence 400. This command affects
how clauses and formulas are parsed and printed only. The accepted types for binary
operations are infix, infix left (left association), and infix right (right as-
sociation). The accepted types for unary operations are prefix and postfix. The
precedence should be in the range 1–998. Symbols with lower precedence bind more
tightly. Several operations are predeclared—see the table in Section 3.2.2.

3.1.2 Advanced Commands

The commands in this sections can be used to fine-tune the search.

set(lnh). % default set
clear(lnh).
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This flag says to use the least number heuristic (LNH). It is nearly always recom-
mended. See Section 5.4.

assign(selection order, n). % default n � �

This parameter determines the set of cells that are candidates for selection. See Section
5.3. If n � �, all open cells are considered. If n � �, concentric order is used. If
n � �, concentric-band order is used.

assign(selection measure, n). % default n � �

Given a set of cells, this parameter determines which of those cells is selected for
assignment. See Section 5.3. If n � �, select the first candidate cell. If n � �, select the
candidate with the greatest number of occurrences in the current set of (ground) clauses.
If n � �, select the candidate that would cause the greatest number of propagations. If
n � �, select the candidate that would cause the greatest number of contradictions. If
n � �, select the candidate with the fewest possible values.

set(negprop). % default set
clear(negprop).

This flag enables or disables the negative propagation inference rules, which derive
negated equations. These rules are not required for completeness of the search, but
they nearly always help. Four types of negative propagation are enabled or disabled by
the following four parameters. For any negative propagation to occur, negprop must
be set.

set(neg assign). % default set
clear(neg assign).

If this flag is set, negative propagation is triggered by assignments (i.e., when a cell is
given a value), for example, f��� �	 � �.

set(neg assign near). % default set
clear(neg assign near).

If this flag is set, negative propagation is triggered by near assignments, for example,
f��� g��		 � �.

set(neg elim). % default set
clear(neg elim).

If this flag is set, negative propagation is triggered by eliminations, for example,
f��� �	 �� �.
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set(neg elim near). % default set
clear(neg elim near).

If this flag is set, negative propagation is triggered by near eliminations, for example,
f��� g��		 �� �.

set(trace).
clear(trace). % default clear

If this flag is set, detailed information about the search, including a trace of all assign-
ments and backtracking, is printed to the standard output. This flag causes a lot of
output, so it should be used only on small searches.

3.2 The Clauses and Formulas

The theory to be modeled can be specified with first-order clauses, first-order formulas, or a com-
bination of the two. There can be any number of clause and formula lists, given as in the following
(silly) example.

clauses(theory_part_1). % associativity of * as a clause
(x * y) * z = x * (y * z).
end_of_list.

formulas(theory_part_2). % commutativity of * as a formula
all x all y (x * y = y * x).
end_of_list.

The names of the lists need not be “theory part 1” and “theory part 2”. Any names can
be used. When formulas are given, they are immediately transformed (including Skolemization) to
clauses by a straightforward procedure.

The clause and formula languages accepted by Mace4 are determined by a library of automated
deduction routines that is still evolving (LADR [5]), so they are likely to change in future releases
of Mace4. Therefore we do not give a full definition here. Instead we list some key points and
examples, and we refer the reader to the sample input files that accompany the Mace4 distribution
packages. A more formal description of the languages may appear on the Mace4 Web page [6].

Parsing and printing properties of binary and unary symbols can be declared, allowing infix,
prefix, and postfix notation. These declarations are syntactic sugar only—they have no logical sig-
nificance. The user can declare such properties with the op command, and several are predeclared
as shown in the following table.
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op(800, infix, ->). % implication
op(800, infix, <-). % implied by
op(800, infix, <->). % equivalence
op(790, infix_right, |). % disjunction
op(780, infix_right, &). % conjunction
op(300, prefix, ˜). % negation
op(700, infix, =). % equality
op(700, infix, !=). % negated equality
op(500, infix, +). % general use
op(400, infix, *). % general use
op(300, prefix, -). % general use and integers

Predeclared Operations

Whitespace (spaces,newlines,returns,tabs,vertical-tabs,formfeeds) is allowed just about any-
where. When in doubt about how much white space and how many parentheses to use, be con-
servative and observe how Mace4 echoes your input. Mace4 frequently prints more whitespace
than necessary.

Negated equality can be abbreviated with the symbol “!=”.

3.2.1 Domain Elements

If the input clauses or formulas contain constants that are natural numbers, f�� �� �� �� � � �g, such
constants are always interpreted as members of the domain. For example, one can use 1 and 0 as
the top and bottom of a lattice, and the corresponding members of the domain are assigned to them.

When using domain elements (i.e., natural number constants) in the input, it is best to use
the smallest ones—doing otherwise defeats the purpose of the least-number heuristic. If the input
contains a domain element that is greater than or equal to the specified domain size, a fatal error
occurs.

3.2.2 Clauses

A clause is a disjunction of literals, terminated with a period. A literal is either an atomic formula
or the negation of an atomic formula. The disjunction symbol is |, and the negation symbol is ˜.

All quantification in clauses is universal and implicit. Variables are distinguished from con-
stants by the following rule. Ordinarily, variables start with (lower case) u–z. If the flag pro-
log style variables is set, variables start with (upper case) A–Z.

p(x) | ˜q(a) | r(x,b). % a basic clause
|(p(x),|(˜(q(a)),r(x,b))). % the same basic clause
x*y!=z | x*w!=z | y=w. % a cancellation rule
x * (y + z) = x * y + x * z. % distributivity rule

Examples of Clauses, Assuming the Default Operator Declarations
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3.2.3 Formulas

All quantification in formulas is explicit, and the top level of a formula does not have free variables.
Therefore, no rules are needed to distinguish variables from constants—a nullary symbol is a vari-
able if and only if it is bound by a quantifier. For example, the symbol e can be a variable. To
prevent a common error, however, we do not allow constants that might be misinterpreted by the
user as variables. For example, the string(all x p(x,y)) is not accepted as a formula, because
the constant y looks like a variable.

� An atomic formula is a formula.

� If F is a formula, then (˜F) is a formula.

� If F and G are formulas, then (F & G), (F | G), (F -> G), (F <- G), and (F <-
> G) are formulas.

� If x is a symbol and F is a formula, then (all x F) and (exists x F) are formulas.

The default operator declarations allow many parentheses to be dropped. Also, a special rule
allows parentheses to be dropped for sequences of quantifiers. For example, the following two
strings represent the same formula.

all x all y exists z (p(x,y,z) <-> q(x) & ˜r(y) | s(z)).
(all x (all y (exists z ((p(x,y,z) <-> (q(x) & (˜r(y))) | s(z)))))).

4 Running Mace4

The basic way to call Mace4 is shown in the following example.

% mace4 < group.in > group.out

Mace4 also accepts command-line arguments corresponding to the options described in Section 3.1.
Command-line options override the corresponding settings in the input file. To see the correspon-
dence between the options and the command-line arguments, run the following command.

% mace4 help

Assume the command-line argument -n corresponds to the parameter domain size,
and -m corresponds to max models. If the input file contains the command as-
sign(iterate up to,10), the command

% mace4 -n8 -m20 < group.in > group.out

tells Mace4 to search for up to 20 models of sizes 8, 9, and 10.
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4.1 Theorem Prover Compatibility Mode

One of the basic ways to use Mace4 is as a complement to a theorem prover, with the prover
searching for a proof and Mace4 looking for a counterexample. In order to be able to use the same
input file with both programs, Mace4 has a mode in which it will allow (and ignore) commands and
lists intended for other programs. (Ordinarily an unrecognized command or list causes a fatal error.)

The command-line option -c tells Mace4 to allow unrecognized set, clear, and assign
commands and to allow unrecognized lists of objects.

Mace4 is not compatible with Otter [3] in this way. However, a script can help in transforming
Otter (and Mace2) input files for use with Mace4 (see Section 8).

4.2 Exit Codes

When a Mace4 process terminates, it returns an exit code. If Mace4 is called from another program,
say a shell or Perl script, that program can use Mace4’s exit code to decide what do do next. The
exit codes are as follows.

0: The specified number of models (max models, default 1) was found.

1: A fatal error occurred. This is usually caused by an error in the input file, the memory limit
(max megs, default 192), or a bug in Mace4.

2: The search completed without finding any models. That is, there are no models within the
given constraints.

3: Some models were found, but the search completed before max models models were found.

4: Some models were found, but the time limit (max seconds, default �) terminated the
search before max models models were found.

5: The time limit (max seconds) terminated the search before any models were found.

Here is an example of a Perl program that calls Mace4. It takes a stream of clauses and for each,
it calls Mace4 to look for a noncommutative model up through size four. If none is found, the clause
is printed.

#!/usr/bin/perl -w
$mace4 = "/home/mccune/bin/mace4";
$input = "/tmp/mace$$";
$unsatisfiable_exit = 2;
while ($equation = <STDIN>) {

open(FH, ">$input") || die "Cannot open file $input";
print FH "clauses(theory). $equation f(0,1)!=f(1,0). end_of_list.\n";
close(FH);
$rc = system("$mace4 -N4 < $input > /dev/null 2> /dev/null");
$rc = $rc / 256; # This gets the actual exit code.
if ($rc == $unsatisfiable_exit) { print $equation; }

}
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5 How Mace4 Works

This section describes how Mace4 works for a fixed domain size, say n. The members of the domain
are always named f�� � � � � n� �g. If Mace4 is iterating through domain sizes, this section applies,
separately, to each domain size.

First, tables for the function and predicate symbols are set up, and all ground instances of the
input clauses (over the domain) are generated. Then, in a systematic way, a recursive backtracking
procedure fills in the cells of the tables and uses the ground clauses to propagate the effects of the
assignments. When contradictions (dead ends) are encountered, backtracking occurs, the propaga-
tions and assignments are undone, and other assignments are attempted. If all the tables become
full, with no contradictions, a model has been found. That is, we have an interpretation in which all
of the input clauses are true.

5.1 Initialization

Mace4 starts by allocating a table for each function and predicate symbol. Constants (which are
function symbols of arity 0) are single cells, function symbols of arity 2 get an n � n table, and so
on. The range of values for function symbols will be members of the domain 
�� � � � � n � ��, and
values for predicate symbols will be 0 and 1, representing the truth values.

Then, for each input clause, all ground instances over the domain are generated. If a clause has
v variables, it has nv instances. A variable max constrained contains the value of the maximum
constrained value and is used for the least number heuristic (see Section 5.4). If any domain values
occur in the input clauses, max constrained is initialized to the greatest domain value in the input;
otherwise it is initialized to -1.

In many cases, the input clauses allow us to start filling in the tables before the search begins.
For example, if the input says that a binary operation is idempotent, say f�x� x	 � x, then the n

cells on the diagonal of table f can be filled. This can be done by simply calling the assignment
and propagation routines described below. All of these are fixed assignments which never need to
be undone.

At this point, the initialization is complete, and the initial partial model (possibly empty) may
be printed to the output file. Now, we can start the search.

5.2 Search

Here is the recursive backtracking search procedure, roughly stated.
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procedure search:
{

cell = select_cell();
top = last_value_to_consider();
foreach i (0 ... top)
{

ok = assign_and_propagate(cell,i);
if (ok)
{

search();
undo_assignments();

}
}

The important components of the search are cell selection, determining which values need to be
considered for assignment to the selected cell, and propagating the assignments. Note that the same
pseudo-code could be used to represent a Davis-Putnam-Loveland-Logemann (DPLL) propositional
satisfiability procedure. In that case, select cell() would select a propositional variable, and
top is always 1.

5.3 Cell Selection

Cell selection is divided into two stages. The first, controlled by the parameter selec-
tion order, determines a set of candidate cells. The second stage, controlled by the parameter
selection measure, picks one of the candidates cells.

Candidates Cells. Three methods are available, specified by the parameter selection order.

0. The linear order. All open cells are candidates. This order usually defeats the purpose of the
least number heuristic.

1. The concentric order. Let i be the smallest maximum index of an open cell; then all cells
with maximum index i are candidates. This method causes the maximum constrained value
to be increased only when necessary.

2. The concentric-band order. All cells with maximum index less than or equal to the current
maximum constrained value are candidates. If there is none, we revert to concentric order.
This method usually gives more candidates than the concentric order, but it still keeps maxi-
mum constrained value as low as possible.

Selecting a Candidate. Four methods are available, specified by the parameter selec-
tion measure.

0. Select the first candidate.

1. Select the candidate with the greatest number of occurrences in the current set of (ground)
clauses. Recall that each cell is associated with a term, e.g., f��� �	. The motivation for this

11



measure is that the assignment will have the greatest initial effect (ignoring propagation) in
simplifying the clauses.

2. Select the candidate that would cause the greatest number of propagations. This is done as
follows. For each cell being considered, all assignments and subsequent propagations are
done (and undone), and the total number of propagations is counted; this is an expensive
lookahead operation with the motivation of filling the tables as soon as possible.

3. Select the candidate that would cause the greatest number of contradictions; for each cell
being considered, all assignments and subsequent propagations are done (and undone), and
the number of assignments that lead directly to contradictions are counted; this is an expensive
lookahead operation with the motivation of cutting off paths as soon as possible.

4. Select the candidate with the smallest number of possible values. Each cell has a list of
possible values (see Section 7). As the search progresses, negated equalities can be derived.
If, for example, f��� �	 �� � is derived, the value 4 is removed from the possible-values list
for cell f��� �	. (When all but one value is eliminated, an assignment can be made.) The
primary benefit of negative propagation (see Section 5.6) is that it derives negated equalities
that are used for this purpose.

5.4 Cell Assignment

Once we select an open cell, we have to determine the set of values to be considered for assignment
to the cell. If it is a Boolean-valued cell, we always try both 0 and 1. Otherwise, if the LNH
(least-number heuristic) flag is clear, we try all members of the domain 
�� � � � � n� ��.

The least number heuristic (LNH) was first used in Falcon [7] and later in SEM [8]. It eliminates
some of the isomorphism in the search. The basic idea is that at a given point in the search, all of
the domain values, say 
�� � � � � n� ��, are partitioned into the constrained values 
�� � � � � i� and the
unconstrained values 
i��� � � � � n� ��. The unconstrained values are all symmetric—if any one of
them is tried, the others need not be. We try the least of them. That is, when faced with an empty
cell, we try 
�� � � � � i � ��. A value becomes constrained when it is assigned to a cell or when it
becomes the index of a cell that is assigned to. (Subsequent assignments during unit propagation
do not constrain values. Because of this distinction, we often think of two types of assignment: by
selection and by propagation.) The LNH eliminates only some of the isomorphism in the search. In
practice, it usually has effect only at the very top levels of the search tree.

5.5 Positive Propagation

When we make an assignment, say f��� �	 � �, positive propagation is always applied. All occur-
rences of f��� �	 in the ground clauses are rewritten to 4, and these changes can trigger other rewrite
operations by the other current assignments. During this process, more assignments can be derived.
For example, with equation g�f��� �		 � , we rewrite once, and then we have assignment g��	 � 
to propagate. And so on. Positive propagation is important to the efficiency of the method; there are
typically many assignments by propagation for each assignment by selection. Each rewriting oper-
ation and each assignment are recorded on a stack so that they can be undone when backtracking.
In addition, we maintain a queue of assignments to be made and propagated.
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5.6 Negative Propagation

Negative propagation derives negated equalities. The power of this feature is in eliminating possible
values. If all but one value for a cell is eliminated, an assignment can be made. In addition, cell
selection can be based on the least number of possible values, under the motivation that fewer
possible values causes less branching.

Suppose we know that f��� �	 � � and f��� g�		 �� �; then we may infer g�	 �� �. The same
conclusion can be drawn if the signs on the premises are reversed. Examples of the four types of
clause to which negative propagation can be applied are shown in the following table.

Type Example
Assignment f��� �	 � �
Near assignment f��� g�		 � �
Elimination f��� �	 �� �
Near elimination f��� g�		 �� �

Assignments pair with near eliminations, and eliminations pair with near assignments. Any of the
four types can trigger negative inferences, and there are four corresponding flags to enable the neg-
ative inferences. For example, if the neg elim near flag is set, and if a near elimination clause
is derived, it will be used with all applicable assignment clauses to derive new negated equalities.
Negative inferences can cause propagation of assignments as well as eliminations by eliminating all
but one possible value of a cell.

Negative inference and propagation apply to Boolean-valued terms as well as to ordinary terms.
If we have P ��� �	 and �P ��� g�		, we can derive g�	 �� �. All of the rules for Boolean terms are
analogous to the rules for ordinary terms.

Negative propagation is not required for completeness and can be disabled with the command
clear(neg prop).

6 Implementation

Mace4 is coded in C, and and we have tried to make it run quickly. As in most DPLL procedures,
the vast majority of the processing time is spent propagating assignments. In our case, that includes
both positive and negative propagation.

The data structures were designed with the goal of minimizing the the allocation and dealloca-
tion of memory. After the ground clauses are constructed, no more term allocation occurs; all of the
rewriting is done by copying pointers. Memory is allocated and deallocated (by our own routines,
not by operating system calls) for the stack of changes that must be undone and for the queue of
tasks to be done.

Say we have a new assignment f��� �	 � �. We maintain a list of occurrences of f��� �	 (con-
structed from the term nodes so that it need not be allocated or deallocated); for each occurrence,
say g�f��� �		, we rewrite it to g��	 and record that change on the stack. We then update the list of
occurrences of g��	 to include this new one and record that change in the stack. If this rewrite cre-
ates a new assignment, elimination, near assignment, or near elimination, we add that to the queue
of tasks.
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For negative inference, we have to be able to quickly locate near assignments and near elim-
inations as well as ordinary assignments and eliminations. We index near assignments and near
eliminations with complete discrimination trees, that is, a discrimination tree [1] in which all possi-
ble branches are constructed at the start of the search, and only the leaves are updated for insertions
and deletions. The complete discrimination trees are not very big, because the term depth is always
2. Insertions into the discrimination trees are recorded on the stack so that they are undone on
backtracking.

Mace4 is the first released program that has been constructed with LADR (Library of Automated
Deduction Routines) [5], a library of C routines for building automated deduction tools. LADR
has been under development at Argonne, off and on, for several years (at times LADR was also
known as OPS). The LADR features we used involve the term data structure, parsing and printing
terms, interpretations, auxiliary data structures such as linked lists, flag and parameter handling, and
clocks.

7 Theory and Completeness

For a given (finite) domain size, the existence of a model is obviously decidable, and Mace4 is
intended to be a decision procedure. We can view the existence problem as satisfiability of a set of
ground clauses with equality.

To take this view, we start with the set of ground clauses that Mace4 generates during initializa-
tion. Then we add some clauses that correspond to operations that are built in to Mace4. First, we
add �n� � n	�� clauses stating that the n domain members are distinct. Second, for each cell we
add an n-literal positive clause stating that the term corresponding to the cell must equal one of the
domain members. For example,

f��� �	 � � j f��� �	 � � j f��� �	 � � j f��� �	 � ��

Now we have a satisfiability problem for domain size n, independent of Mace4.

Practical decision procedures for ground clauses with equality have been studied before. How-
ever, the structure of our problems leads us to believe that the special-purpose methods embodied in
Mace4 are better than general-purpose methods that have been proposed. First, the n-literal positive
clauses indicate that the splitting and backtracking approach in Mace4 is appropriate. Second, it is
not clear how the symmetry exploited by the least-number heuristic could be effectively addressed
in a general-purpose method. Third, rewriting with assignment clauses is the only kind of rewriting
we need, because we can always get enough assignment clauses (by splitting on then-literal positive
clauses) to rewrite every clause to 0 or 1. Finally, negative inference is not needed for completeness,
but it frequently gives enormous speedups.

Before designing Mace4, we discussed the problem with N. Shankar, R. Niewenhuis, and D.
Kapur. Most of those discussions revolved around combining congruence closure (to do the ground
rewriting) with the DPLL method (to do the splitting and backtracking). That is still an interesting
approach, but we took the special-purpose path, because it seems simpler and more natural for this
application.
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8 Auxiliary Programs

The Mace4 distribution packages contain several additional programs and scripts. Most of these are
short C programs built from the routines in LADR library, and they take inputs similar to the Mace4
input.

Isofilter. The least number heuristic in Mace4 prevents some of the isomorphism in the search for
models, but it is far from optimal. If the user asks for more than one model for a particular input
(e.g., assign(max models,10000), most of the models will usually be isomorphic to others
in the set. The program isofilter takes a stream of models and eliminates the isomorphic ones. Let’s
say we wish to see all of the ortholattices (OLs) up through order 10. We prepare the input following
file, named OL.in.

op(400, infix, ˆ). op(400, infix, v).
assign(iterate_up_to, 10).
set(print_models_portable).
assign(max_models, 100000).

clauses(theory).
% Lattice theory (LT) 6-basis

x v y = y v x. x ˆ y = y ˆ x.
(x v y) v z = x v (y v z). (x ˆ y) ˆ z = x ˆ (y ˆ z).
x v (x ˆ y) = x. x ˆ (x v y) = x.

% Add the following pair for complemented lattice (CL)
x v c(x) = 1.
x ˆ c(x) = 0.

% Add the following for ortholattice (OL)
c(x ˆ y) = c(x) v c(y).
c(x v y) = c(x) ˆ c(y).
c(c(x)) = x.

% Add the following for orthomodular lattice (OML)
% x v (c(x) ˆ (x v y)) = x v y. % OML law
% Add the following for modular ortholattice (MOL)
% x v (y ˆ (x v z)) = (x v y) ˆ (x v z). % Modularity
% Add the following for Boolean algebra (BA)
% x v (y ˆ z) = (x v y) ˆ (x v z). % Distributivity

Then we run the following command.

% mace4 < OL.in | get_interps | isofilter > OL.out

The output file OL.out contains 24 ortholattices of orders 2–10, and the last line of the file is

isofilter: input=1315, kept=24, checks=1291, perms=2975947, 2.27 sec.

saying that isofilter received 1,315 interpretations from Mace4 and determined that 24 of those are
nonisomorphic. It did 1,291 actual isomorphism checks on pairs of interpretations, involving almost
3 million permutations. Generating the OLs took about 1.4 seconds (this time was determined
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in a separate run, because the script get interps removed that statistic), and eliminating the
isomorphic ones took 2.27 seconds.

Isofilter does not attempt to permute operations when checking for isomorphism. For example,
a pair of dual lattices are not necessarily isomorphic.

Get interps. This is a simple awk script that extracts interpretations from Mace4 output.
The interpretations must be in portable format, which is specified with the Mace4 command
set(print models portable). See the preceding isofilter example.

Modfilter. This program uses a set of interpretations to filter a stream of clauses. It takes two
command-line arguments: (1) a file of interpretations in portable format, and (2) the type of filter to
apply. The filter types are listed in the following table.

true in all Admit clauses true in all of the interpretations.
true in some Admit clauses true in some of the interpretations.
false in all Admit clauses false in all of the interpretations.
false in some Admit clauses false in some of the interpretations.

The clauses to be tested are read from the standard input, which should contain nothing but
the clauses (without end of list). If the clauses need operator declarations, they should
be at the beginning of the file of interpretations. The interpretations should be surrounded by
“terms(interpretations).” and “end of list.”. Here is an example that uses the
ortholattices up through size 6 to filter some Boolean algebra identities.

% modfilter interp.OL6 true_in_all < BA.in

Modtester. This program takes a set of interpretations and a stream of clauses. For each clause, it
tells the interpretations in which the clause is true. The calling sequence and the format of the input
are similar to the program modfilter, except that no filter type is given on the command line. An
example follows.

% modtester interp.OL6 < BA.in

Interpfilter. This program takes a file of clauses (as command-line argument 1), a test to apply
(as command-line argument 2), and a stream of interpretations (from the standard input). The
accepted tests are models and nonmodels. For each interpretation I, if I is a model or nonmodel
(as specified in the test) of the set of clauses, the interpretation is passed through to the standard
output. Say we have a set of ortholattices (file OL.8) and we wish to eliminate the distributive
ones. Then we can create a file containing a distributivity clause (file distributivity) and run
the following command.

% interpfilter distributivity nonmodels < OL.8
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Otter-to-mace4. This is a Perl script that takes an Otter (also Mace2) input file (from the standard
input) and tries to convert it to a Mace4 input file. It is far from perfect, but is works well for many
simple Otter inputs. An example follows.

% otter-to-mace4 < lattice-otter.in > lattice-mace.in

For more information, run the command “otter-to-mace4 help”.
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